

<Insert Picture Here>

CFQ IO Scheduler
Jens Axboe <jens.axboe@oracle.com>
Consulting Member of Staff

Outline

• Drive characteristics
• History of CFQ
• CFQ design

• Work load simulations
• Data structures
• Algorithms

• Some benchmark results

Drive performance
Characteristics

• How the drive can help us
• Command queuing (NCQ, TCQ)

• Optimal seek pattern
• Eliminate/reduce rotational latency

• Where the drive is mostly helpless
• Associated/dependent requests
• Competing IO streams
• Fairness

Current drive performance

5400RPM

7200RPM

15000 RPM

Avg seek Avg rot. delay Transfer speed

14 msec

9 msec

4 msec

5.6 msec

4.2 msec

2.0 msec 90 MiB/s

60 MiB/s

40 MiB/s

5400RPM

7200RPM

15000 RPM

4K xfer 4K random read 64K random read

98 μsec

65 μsec

43 μsec

203 K/sec

301 K/sec

662 K/sec 9600 K/sec

4490 K/sec

3020 K/sec

Linux IO Scheduling
Schedulers

• Currently includes 4 IO schedulers
• noop

• No sorting, does request merging
• deadline

• Assigns deadlines to requests
• Otherwise CSCAN with a few twists

• Direction batching
• anticipatory (“as”)

• Basic functional algorithm is like deadline
• Adds request anticipation

• CFQ
• We'll get to that

History of CFQ
CFQ v1

• Inspired by SFQ, stochastic fair queuing
• Fixed number of buckets
• Per-process buckets (tgid, really) → Complete FQ

• First IO scheduler to tie process and IO
• Linux IO model async

• Round robin of busy processes
• Work conserving

• Approx 700 lines of code
• Merged in 2.6.6

History of CFQ
CFQ v2

• Added persistent process contexts
• Built on the 'as' introduced process io contexts
• Fairness across process life time

• Addressed inter-queue fairness
• Approx 1800 lines of code
• Merged in 2.6.10

History of CFQ
CFQ v3

• Time slice design
• Time based accounting, not request
• Fairness across different io patterns

• Support for IO priorities
• Approx. 2200 lines of code
• Merged in 2.6.13

IO Hierarchy
Classic

Process A

IO Scheduler

Drive+driver

Process B Process C

Re­queue sends back

IO completes

IO Hierarchy
CFQ

Process A

IO Scheduler

Drive+driver

Process B Process C

io context

IO completes

Re­queue sends back

Process <-> CFQ mapping

cfq per­disk contexts

• Request sorting
• FIFO
• ->next_request

• cfq_queue hash

• Priority information, state

Process
io_context

sda
sdc hda

fd0

cfq_queue

sdb

struct cfq_queue

Sorted requests

FIFO

next_rq

• Key
• References
• State information

CFQ per-queue data

• best-effort lists
• busy list
• current list
• idle list

• hash of cfq_queue

• io_context pointer

• state and settings Dispatch
list

Drive

Driver

cfq_data

Time slices
Concept

• Simple to understand
• Each process gets priority access to the disk for a given

period of time

• Fair
• Occasional/sync issuer gets as much time as queue flooder
• Defined latency

• Synchronous slices
• Time bounded only (100 msec at prio 4)
• May idle

• Asynchronous slices
• Time bounded (40 msec at prio 4)
• Request bounded (2 at prio 4)
• May not idle

Time slices
Idling

• Not a work conserving scheduler
• May decide to idle drive, even with work pending

• Why?
• Expect close request
• Seek time reduction
• Several processes

• When not to idle
• Process IO pattern is seeky
• Process “waits” for too long between requests
• Command queuing
• Slice left is less than expected wait and service time

Streamed readers
Example, CFQ vs DEADLINE

Dependent reads
How many reads to open a 300 byte file?

• Monitor IO activity with blktrace

• exec: vi /path/to/some/file

• Total of 5 reads (28KiB)
• Meta data + file data
• Takes 66 msecs unloaded

• Undisturbed
• Imagine a delay between each operation

Dependent reads
Example, CFQ/DEADLINE vs thinker

Reader vs writer
Example, CFQ vs DEADLINE

Queue distribution

• Per-process queues
• Directly issued IO
• Synchronous requests

• Often dependent, process needs request completed
before being able to proceed

• reads, direct writes
• Latency important

• Asynchronous queues
• Writes
• (mainly) indirectly issued IO

• pdflush
• kswapd

• One per priority level
• Latency less important

CFQ per-queue data
Continued

cfq_data

cfq_queue

Best effort priority levels

0

1

7

Active cfq_queue

Current prio list

Request(s) put on dispatch

Queue selection algorithm

• If active queue
• If slice expired

• new queue

• If requests pending

• dispatch

• If queue is sync

• If arm idle timer

• return and wait

• Expire slice

• Set new active queue

Queue request dispatch

• If FIFO contains an expired element
• Sort that request into dispatch list

• Select next request from queue
• Sort that request into dispatch list

• Repeat until quantum met or queue empty

• Assign slice time to queue

• Expire queue for various criteria
• Queue is idle class
• Async queue, and request number met

IO Priority Classes

• 3 default IO scheduling classes
• Each with 8 sub levels, [0 – 7]

• Idle
• Only gets access to disk, when nobody else uses it
• Grace period
• Currently root only

• Best effort
• Default class

• Real time
• Always gets priority access to disk (goes straight to cur_rr)

• Otherwise like best effort (same slice lengths)
• root only

IO Priorities

• 8 default levels
• 0 the highest, 7 the lowest. Default is 4.

• Simple extension to time slices
• Just scale slice with priority

• Can be set explicitly with ionice
• $ ionice -n <level> -c <class> [-p <pid>] [command]
• Inherited across forks

• Otherwise, follows cpu nice
• Best effort class
• nice -20...-16: ionice 0
• nice 0...4 ionice 4
• nice 15...19: ionice 7

IO Priorities
Priority selection

• If real time queues exist
• Select next RR queue for service

• If best effort queues exist
• 0

• 0, 1

• 0, 1, 2 ...

• If idle queues exist
• If we are past the idle grace period

• Select next idle queue for service

• Arm idle grace timer

CFQ tunables

• $ ls /sys/block/sda/queue/iosched/
• back_seek_max, back_seek_penalty

• Modification of one-way scan
• fifo_expire_async, fifo_expire_sync

• Inter-queue fairness
• quantum

• Max dispatch number
• slice_sync, { slice_async, slice_async_rq }

• Controls slice management
• slice_idle

• Controls maximum idle time at the end of slice

<Insert Picture Here>

Performance Results

Test setup

• 7200 RPM SATA drive
• ata_piix controller
• NCQ not used (controller not capable)
• Pentium D 3.0GHz, 2GB RAM

• Not terribly important

• XFS file system

• fio tool used for benchmarks
• Flexible IO tester

Benchmark, competing readers
fio job file

[global]
bs=4k
buffered=1
rw=read
ioengine=sync
iodepth=1
size=128m
write_bw_log

[files]
numjobs=8

• 8 simultaneous readers
• 128 MiB files

• 4 KiB block size
• Write bandwidth log

• 500 msec window average

Benchmark, competing readers
Results

CFQ

AS

DEADLINE

Min bw Max bw Aggr bw

7535 K/s

7240 K/s

7727 K/s 60295 K/s

9451 K/s

2488 K/s2462 K/s

57921 K/s

19700 K/s

CFQ

AS

DEADLINE

Runtime Max latency Avg lat

17.8 secs

18.5 secs

54.5 secs

746 msec

890 msec

240 msec 13 msec

17 msec

19 msec

1.7 msec

0.5 msec

0.5 msec

Deviation

Single thread: ~62MiB/sec

% of max

94.9%

91.2%

31.0%

Benchmark, competing readers
Graphed bandwidth, CFQ

Benchmark, competing readers
Graphed bandwidth, AS

Benchmark, competing readers
CFQ IO priorities

• fio job file identical to previous
• Files 1...8 uses priority 0...7
• Best effort

Benchmark, competing readers
Graphed bandwidth, CFQ priorities

Resources

• Kernel files
• block/cfq-iosched.c

• block/elevator.c, include/linux/elevator.h

• block/ll_rw_blk.c, include/linux/blkdev.h

• fio
• git clone git://git.kernel.dk/data/git/fio.git

• blktrace
• git clone git://git.kernel.dk/data/git/blktrace.git
• Kernel parts merged since 2.6.17

Questions?

Thanks!

